NAME

DATE

PERIOD

Unit 1, Lesson 16 Parallel Lines and the Angles in a Triangle

Let's see why the angles in a triangle add to 180 degrees.

16.1 True or False: Computational Relationships

Is each equation true or false?

$$62 - 28 = 60 - 30$$
$$3 \cdot -8 = (2 \cdot -8) - 8$$
$$\frac{16}{-2} + \frac{24}{-2} = \frac{40}{-2}$$

16.2 Angle Plus Two

Interactive digital version available

```
a.openup.org/ms-math/en/s/ccss-8-1-16-2
```


Here is triangle *ABC*.

1. Rotate triangle ABC 180° around the midpoint of side AC. Label the new vertex D.

NAME		DATE	PERIOD		
	2. Rotate triangle ABC 180° around the midpoint of side AB . Label the new vertex E .				
	3. Look at angles <i>EAB</i> , <i>BAC</i> , and <i>CAD</i> . Without measuring, write what you think is the sum of the measures of these angles. Explain or show your reasoning.				
	4. Is the measure of angle <i>EA</i> If so, which one? If not, how a	B equal to the measure do you know?	e of any angle in triangle ABC ?		
	5. Is the measure of angle <i>CA</i> If so, which one? If not, how o	D equal to the measure do you know?	e of any angle in triangle <i>ABC</i> ?		

6. What is the sum of the measures of angles *ABC*, *BAC*, and *ACB*?

16.3 Every Triangle in the World

Here is $\triangle ABC$. Line DE is parallel to line AC.

1. What is $m \angle DBA + b + m \angle CBE$? Explain how you know.

NAME	DATE	PERIOD

- 2. Use your answer to explain why a + b + c = 180.
- 3. Explain why your argument will work for *any* triangle: that is, explain why the sum of the angle measures in *any* triangle is 180° .

- 1. Using a ruler, create a few quadrilaterals. Use a protractor to measure the four angles inside the quadrilateral. What is the sum of these four angle measures?
- 2. Come up with an explanation for why anything you notice must be true (hint: draw one diagonal in each quadrilateral).

NAME	DATE	PERIOD

16.4 Four Triangles Revisited

This diagram shows a square BDFH that has been made by images of triangle ABC under rigid transformations.

Given that angle BAC measures 53 degrees, find as many other angle measures as you can.

Lesson 16 Summary

Using parallel lines and rotations, we can understand why the angles in a triangle always add to 180° . Here is triangle ABC. Line DE is parallel to AC and contains B.

A 180 degree rotation of triangle ABC around the midpoint of AB interchanges angles A and DBA so they have the same measure: in the picture these angles are marked as x° . A 180 degree rotation of triangle ABC around the midpoint of BC interchanges angles C and CBE so they have the same measure: in the picture, these angles are marked as z° . Also, DBE is a straight line because 180 degree rotations take lines to parallel lines. So the three angles with vertex B make a line and they add up to $180^\circ (x + y + z = 180)$. But x, y, z are the measures of the three angles in $\triangle ABC$ so the sum of the angles in a triangle is always 180° !